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Symplectic mappings that model the four-dimensional betatron motion in a magnetic lattice are con-
sidered. We define the dynamic aperture in terms of the connected volume in the phase space of initial
conditions that are bounded for a given number of iterations. Different methods for a fast estimate of
this quantity are given; the analysis of the associated errors and the optimization of the integration steps
are outlined. A comparison of the accuracy of these methods is given for both simple models and more

realistic lattices.
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I. INTRODUCTION

The presence of nonlinearities in the magnetic field of
the elements of an accelerator can greatly reduce the sta-
bility domain, i.e., the region in phase space where one
can safely operate with the beam [1-3]. An accurate esti-
mate of the dimension of this domain, which is related to
the so-called dynamic aperture, is crucial both for the un-
derstanding of the dynamics of existing machines [3] and
for the specification of the lattice parameters of planned
machines [4].

In this paper we restrict ourselves to the analysis of the
nonlinear oscillations of the beam in the plane (x,y)
transverse to the orbit (betatron motion). Fixing a sec-
tion of the machine, we analyze the dynamics in the
four-dimensional phase space (x,p,,y,p,), p; and p, be-
ing the momenta associated with x and y.

The numerical estimate of the dynamic aperture is re-
lated to the computation of the volume in phase space of
the initial conditions that are stable after a given number
of revolutions around the machine. This set can be rath-
er irregular and it can have holes: in fact, initial condi-
tions arbitrarily close to the origin can be unstable. This
phenomenon, universally known as Arnold diffusion [5],
occurs in systems whose phase space has dimension
higher than 2. Even though it is generally believed that
this effect is not of practical relevance for accelerator
physics, it appears to be difficult to give a rigorous
definition of the dynamic aperture.

Moreover, the main difficulty in determining a reliable
estimate of the stability domain for complicated lattices
stems not only from theoretical arguments. In fact, a nu-
merical evaluation of the volume of the stable initial con-
ditions is very computer CPU time consuming, as in prin-
ciple one should scan the four variables (x,p,,y,p, ).

To overcome these problems for complicated lattices, a
pragmatic approach has been proposed [2,3]: tracking is
carried out over initial conditions with zero phases
(px =p,=0) and a fixed ratio x /y (in most cases one uses
x /y =1), with a large gain in CPU time. Unfortunately,
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this approach is not completely correct as it does not take
into account two main effects, namely, the distortion of
the orbits along the phases and the different dynamics of
the particles with various ratios x/y. The influence of
the distortion along the phases can be evaluated through
the smear. This quantity measures the standard deviation
of the particle amplitude along the orbit [6]. Moreover,
several studies have been performed to analyze the dy-
namics of particles with various ratios of x /y (see, for in-
stance, [1,3,7]). Neglecting these effects, the computed
dynamic aperture will be affected by errors that cannot be
estimated a priori.

Finding an efficient and correct way to estimate the dy-
namic aperture is the key point in problems such as sort-
ing the magnets according to their random magnetic er-
rors [8]. In fact, as for all the optimization procedures,
the analysis of the errors affecting the computation of the
dynamic aperture is crucial to determine the validity of
the correcting schemes. Furthermore, the study of the
random errors requires one to consider a rather large
number of realizations of these errors: the knowledge of
the dependence of the accuracy on the integration steps
allows one to choose the best compromise between CPU
time and accuracy.

In this paper we present some original numerical
methods to evaluate the dynamic aperture taking into ac-
count the phase space distortions. The first step in this
analysis is to give a definition of dynamic aperture. We
define it as the average distance in phase space of the bor-
der of stability, i.e., as the radius of the hypersphere
whose volume is equal to the connected volume of stable
initial conditions for a fixed number of iterations. Then
we developed some algorithms for its evaluation. The
direct implementation of the complete integration in
phase space is very CPU time consuming: we show that
in order to obtain a relative error of 1/4J, one has to
evaluate J* orbits using an optimized integration.

Indeed, we show that it is possible to exploit the dy-
namics to take into account the distortion of the orbits
along the phases, thus avoiding the integration over these
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variables. As a result, the simulations are considerably
faster and one obtains an optimized relative error of the
order of 1/4J by evaluating only J? orbits. We develop
two algorithms to carry out these fast estimates: the first
one is based on numerical integration [9], while the
second one exploits the perturbative tools of normal
forms [10-12].

We have carried out numerical simulations in order to
check the effectiveness of our techniques and to show
that phase space distortions can be rather relevant. We
analyzed the Hénon map [12,13], a LHC (Large Hadron
Collider) -like cell lattice with random errors [8], and a
Super Proton Synchrotron (SPS) lattice used for experi-
ments [14]. All the computations were carried out for a
short-term tracking (1000 turns). The results show that
for the Hénon map and for the LHC-like cell lattice our
estimates of the dynamic aperture are rather accurate
(2-3%). On the other hand, the results obtained by
tracking particles with zero phases and satisfying x /y =1
are by far less accurate (5—-15 %). This is an indication
of the fact that the phase space distortions are not negli-
gible. In the case of the SPS lattice the situation is even
worse due to the strong nonlinearities: the fast estimate
along the line x /y =1 is affected by a very strong error
(15-45 %), while our methods are still reliable, even
though the strong nonlinearities in the model reduce the
accuracy with respect to the previous cases (6-9 %).

The structure of the paper is as follows. In Sec. II we
consider the two-dimensional (2D) betatronic motion,
which is propaedeutic to the analysis of the more realistic
4D case. In Sec. II A we introduce the notations, in Sec.
II B we give a definition of dynamic aperture, and in Sec.
II C the algorithms are presented. A detailed discussion
of the error sources and of the implementation can be
found in Appendix A. In Sec. II D the numerical results
are presented. The same structure is used for Sec. III,
where the 4D case is analyzed. Concluding remarks are
given in Sec. IV.

II. 2D BETATRON MOTION

A. Model

We consider the transverse motion in a circular parti-
cle accelerator: let F be the one-turn map [10-12],
which gives the position x, , ; of a single particle in phase
space as a function of its position at the previous turn x,,:

Xn+1:F(X,,) . (1)

The iterates of the one-turn map are computed through
the successive application of the maps of each element
(tracking procedure). In this section we restrict ourselves
to the analysis of the 2D betatronic motion, i.e., we have
x=(x,p,). We assume that x,p, are the Courant-Snyder
coordinates, so that the linear part of the map is a rota-
tion by a constant angle @ =2mv. The parameter v is the
linear tune. The phase space of the map has a well
known structure [5,12]: around the origin, which is an el-

E. TODESCO AND M. GIOVANNOZZI 53

liptic fixed point, one has closed curves [ID
Kolmogorov-Arnold-Moser (KAM) tori] and wherever
the nonlinear tune satisfies a resonant condition the in-
variant curves are broken into islands; when nonlineari-
ties are dominant, one reaches a stability border beyond
which a fast escape to infinity occurs.

The KAM tori separate different phase space domains,
i.e., an initial condition inside a KAM torus cannot cross
it: therefore, there exists a last connected invariant curve
whose interior represents a set of stable initial conditions.
Outside this curve, one can only have islands of stability,
scattered in the sea of initial conditions that escape to
infinity. In Fig. 1 we plot the phase portrait of the Hénon
map [see Eq. (6), where the parameter u is set to zero]
whose linear frequency is v=0.28. The last connected in-
variant curve is marked in boldface; one can also observe
a chain of islands of period 15 outside the stable domain.

B. Dynamic aperture definition (2D case)

The stability domain of the one-turn map of Eq. (1) is
given by the area of the set of initial conditions enclosed
by the last connected stable invariant curve. We define
the dynamic aperture as the radius of the circle whose
area is equal to the area of the stability domain. We
make the following remarks.

(i) Islands. The above definition excludes the islands of
stability, which are usually neglected in accelerator phys-
ics, since they is not a safe place to inject the beam.

(ii) Why phase space? One has to consider the area in
phase space x=(x,p, ) and not only the projection of this
area on the physical space x. In fact, even though one is
interested in the physical dimension of the allowed stable
domain for the beam, the betatron motion exchanges the
roles of x and p, along the circumference of the machine.
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FIG. 1. Phase portrait of the 2D Hénon map at v=0.28.
The last stable invariant connected curve is marked in boldface.
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(iii) Long-term stability. The above definition is valid
for infinite times; in fact, in accelerator physics, one is in-
terested in stability over long but finite times, correspond-
ing to the typical time of the experiment run. For a
machine such as the planned LHC [4] this time is of the
order of 107 turns, which is beyond the capability of
modern computers: therefore, one usually considers
short-term stability (i.e., approximately 1000 turns) as a
first indication. More refined estimates can be obtained
through medium-term tracking in conjunction with nu-
merical tools such as Lyapunov exponents [15] or sur-
vival plots [16]. In the following, we will always consider
the dynamic aperture as a function of the number of
iterates, without dealing with the relation between short-
term and long-term stability.

C. Methods to compute the 2D dynamic aperture

1. Method 1: Direct integration

Let us define x(x,p, ) as the characteristic function of
the set of initial conditions that are bounded under N
iterations [i.e., x(x,p, ) is zero if the orbit with initial con-
dition (x,p, ) is lost and unity if it is stable after N itera-
tions]. Then, the dynamic aperture is related to the area
of this set in phase space:

ff)((x,px)dx dp, . ()

Since the linear motion is a rotation by a constant angle,
it is natural to use polar coordinates (7,3):

f:ﬂfow)((r costhr sind)rdrdd . (3)

Having fixed &, let r(4) be the distance along ¢ of the
last connected invariant curve (i.e., the curve marked in
boldface in Fig. 1). Then, we define the area of the stabil-
ity domain as

ay= [T ["raras=1 [ T1rds . @

In this way, one neglects the contribution given by the
stable islands outside the last connected invariant curve.
The subscript indicates that an average over the angle
is carried out. The details of the implementation of this
approach are given in Appendix A 1.

Indeed, once the last stable invariant curve is found for
a given direction J, one already knows the whole orbit
through numerical iteration. This implies that the scan
in the initial conditions over the angle can be avoided if
one can evaluate the area of the orbit (i.e., the nonlinear
invariant), given the N iterates. We will describe two
different approaches that provide an estimate of the in-
variant of motion. Hence one can avoid scanning the an-
gle ¢ with a substantial reduction of CPU time.

2. Method 2: Integration over the dynamics

In this case, we fix an angle & and we define 7 (J) as in
method 1. We evaluate N iterates of the orbit with the
initial condition (r(J)cosd,r(F)sind). Let r"(J) and
3"(F) be the amplitudes and the phases of the nth
iterate. In order to estimate the area of the last stable
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curve, one can replace the average of r2 over the angle
[see Eq. (4)] with the average over the iterates (namely,
we are replacing a space average with a time average):

_1_ m 2 : _L. - (n)(gy712

oy fo [7(9)Pd9— lim — El [r™(3) . (5)
The dependence of the right-hand side on the choice of &
is very weak, since every ¢ should approximate the same
orbit provided the integration step in r is small enough.
Nevertheless, in order to carry out the substitution (5),
one has to assume the following hypotheses.

(i) The frequency of the last invariant curve is irration-
al, i.e., the iterates are dense on the last invariant orbit.

(i) The invariant measure associated with the dynam-
ics over the last stable curve is uniform, i.e., the distribu-
tion of the phases of the iterates on the last invariant
curve is constant.

In Fig. 2 we plot the distribution of the phases of
50000 iterates of one of the last stable curves of the
Hénon map at v=0.28. One can see that, even if the
iterates are dense on the angular interval [0,27] (i.e.,
gaps), the distribution is far from being uniform. This
effect is well known [5,12]: close to hyperbolic (i.e., un-
stable) fixed points, which arise from nonlinear reso-
nances, the motion can be very slow and therefore the
distribution of the iterates over the invariant curve can be
significantly nonuniform. In fact, the four major peaks in
Fig. 2 correspond to the four hyperbolic fixed points that
lie outside the stability domain (see Fig. 1). In order to
eliminate this effect one has to carefully consider the in-
formation folded in the dynamics [9]. In Appendix A2
we give the details of this method. The obtained dynamic
aperture estimate is denoted by 7,.
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FIG. 2. Distribution of the phases of the first 50000 iterates
of one of the last stable invariant connected curves of the 2D
Hénon map at v=0.28.
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3. Method 3: Normal forms

The normal forms series allow one to give an analytic
approximation of the orbit in phase space and therefore
provide another method to estimate the dynamic aper-
ture. According to the nonresonant normal form theory,
one conjugates the map F with a normal form U, which
is an amplitude-dependent rotation, using a conjugating
function ® (see Refs. [10-12]). The orbits of F are
transformed through the inverse conjugating function
W= ! to circles in the normalized plane. Since ¥ is
area preserving, the area of the last stable orbit (i.e., the
dynamic aperture) can be evaluated by taking 7 times the
radius of the orbit transformed in the normalized space.
In Appendix A 3 we give the details of the implementa-
tion of this algorithm; the obtained dynamic aperture es-
timate is denoted by ryg.

D. Numerical results

We consider a lattice model made up of a linear part
plus a nonlinear element containing a sextupole and an
octupole in the one-kick approximation:

x'= cos(2mv, )x +sin(2mv, )(p, +x2+pux?)

(6)
pi=—sin(2mv, )x + cos(2mv, )(p, +x2+pux?),
where p can be expressed as
1 KS ‘/—
= —— . 7
3 K, B (7

The quantities K,,K; represent the integrated sextupolar
and octupolar gradients, respectively, while 3 is the value
of the beta function in the nonlinear element.

When =0 one obtains the conservative Hénon map
[12]. We computed the dynamic aperture over N = 1000
turns for different values of the parameter u, having set
the tune to the value v, =0.28. In Table I we show the
dynamic apertures evaluated using the described methods
(i.e., ry, 74, and ryg); moreover we give the minimum
¥ min and the maximum r_,, distance of the last invariant
curve from the origin and its intersection r, with the pos-
itive x axes. We used 7y computed with 100 steps for
each variable as the exact dynamic aperture: indeed, this
estimate is affected by a relative error of the order of 1%;
we verified the validity of the error bound by varying the
number of integration steps and checking the stability of
the computed dynamic aperture within the error. In the
last row of Table I the average relative error of r(,7y4,7\g
with respect to rg is given.

TABLE I. Dynamic aperture estimates for the 2D model.

[ " min "max ro rs Yq 'NF
—1 0.49 0.89 0.504 0.611 0.590 0.586
0.61 1.19 0.630 0.716 0.717 0.706
1 0.57 1.13 0.679 0.769 0.739 0.712
10 0.15 0.20 0.168 0.167 0.167 0.167

average relative error 10% 2% 3%
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In all the numerical simulations, the number of steps in
r was 100; r; was computed over 100 iterates and the nor-
mal form estimate ryg was evaluated using a truncation
order between 3 and 8, choosing the order that minimizes
the error provided by the composition of the conjugating
functions ® and W. In all the cases considered, there is a
wide distortion of the phase space and therefore 7, is a
bad estimate of the stability area in phase space. Never-
theless, both r; and ryp can provide rather accurate esti-
mates of the dynamic aperture without making the scan
over the angle.

II1. 4D BETATRONIC MOTION

A. Model

We analyze a 4D symplectic mapping, which can be
written as

x'=F(x), X=(x;PX’y’Py) (8)

where x is now a vector in the 4D Euclidean phase space.
The linear motion is given by the direct product of two
constant rotations in the planes (x,p,) and (y,p,) by the
linear tunes v, and v,.

B. Dynamic aperture definition (4D case)

Let us consider the phase space volume of the initial
conditions that are bounded after N iterations:

ffffx(x,px,y,py)dxdpxdydpy, ©

where x(x,p,,y,py) is the generalization of the charac-
teristic function [see Eq. (2)] to the 4D case. Since in four
dimensions the invariant curves (i.e., 2D KAM tori) do
not separate different domains of phase space, the con-
cept of last invariant curve (which surrounds stable initial
conditions) is not valid anymore [5,12]. In principle, the
stability domain for a fixed number of iterations could be
a rather peculiar set in phase space, with holes and very
irregular structures. However, it seems from numerical
simulations [2,3,7,8,16] that these situations are not typi-
cal of weakly nonlinear lattices, where these structures
have no practical relevance, since they occupy a negligi-
ble fraction of the phase space volume. Therefore, in
general, there exists a connected region of initial condi-
tions that are stable for a given number of iterations.

C. Methods to compute the 4D dynamic aperture

In this section we will generalize the methods already
presented for the two-dimensional case (again, the details
can be found in the Appendix B).

1. Method 1: Direct integration

In order to exclude the disconnected part of the stabili-
ty domain in the integral (9), we have to choose a suitable
coordinate transformation. Since the linear motion is the
direct product of constant rotations, the natural choice is
to use polar variables (r;,%,,r,,%,): r; and r, are the
linear invariants. The nonlinear part of the equations of
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motion adds a coupling between the two planes, the per-
turbative parameter being the distance to the origin.
Therefore it is natural to replace »; and r, with the polar
variables r cosa and r sina:

x =r cosa cos?, ,
P, =rcosasind, ,
y =rsina cosd, , (10)
py=r sinasind, ,

where r€[0,+ [, ¢4,3,E[0,27(,
Substituting in Eq. (9) we obtain

27 2w pw/2 © 3
fo fo fo fo x(r,a,3,9,)r
Xsin(a) cos(a)drdadddd, . (11)

Having fixed a, ¢, and &,, let r(a,9,,3,) be the first
value of r whose orbit is not bounded after N iterations.
Then, the area of a connected stability domain is

Aa,ﬂl,ﬁz Z%fOZﬂfozﬂfoﬂ/z[r(aa1}1’62)]4

Xsin(2a)da d9,dd, . (12)

and a€[0,7/2].

In this way one excludes stable islands that are not con-
nected to the main stable domain. In principle, this
method can lead also to exclude connected parts. We
define the dynamic aperture as the radius of the hyper-
sphere that has the same volume as the stability domain:
24,y 5, 1/4

77.2

(13)

r =
a,3,,3,

2. Method 2: Integration over the dynamics

The generalization of method 2 to the 4D case is
straightforward and will be discussed in Appendix B2;
the dynamic aperture estimate obtained is denoted by
Tad-

3. Method 3: Normal forms

According to the nonresonant normal form theory, us-
ing a conjugating function ®, one transforms a 4D map F
into its normal form U [11,12,8]. The normal form is a
direct product of rotations in the two phase planes (x,p, )
and (y,p,), whose nonlinear frequencies depend on the
distance to the origin. The two components of the in-
verse conjugating function ¥, and ¥, give the approxi-
mated nonlinear invariants p; and p,.

Again, r(a,51,52) stands for the first value of the radi-
al coordinate for which a particle loss occurs along the
direction a,1_§1,52; then, thanks to the properties of the
normal forms, the nonlinear invariants p,,p, will be in-
dependent of the values of the phases &,,3,. Therefore,
in Eq. (12) the integration over the phases can be trivially
computed and the first-order result [see Appendix (B3)]
will be

2
Aa’NF=—7—;—foﬂ/z[pl(r,a)—l—pz(r,a)]zsin(Za)da . aa
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The details of the implementation of this approach are
given in Appendix B 3; the dynamic aperture estimate is
denoted by 7, nE-

D. Numerical results: Sextupole and octupole kicks

We have considered a lattice made up of a linear part
plus a nonlinear element containing a sextupole and an
octupole in the one-kick approximation: the one-turn
map reads

x'= cos(2mv, )x
+sin(27v, )[p, +(x?—p?)+u(x3—3xp?)] ,
Py =—sin(2mv, )x

+ cos(2mv, )[p, +(x?—y ) +u(x3—3xp?)],
(15)
y'=cos(2mv, )y

+sin(27v, )[p, —2xy +u(3x y—yH],
p, = —sin(27v, )y
+ cos(2mv, )[p, —2xy +u(3x%y —y?)] .

As for the 2D model (6), the parameter u represents the
ratio between the sextupolar and octupolar integrated
gradients. When p=0 one recovers the 4D conservative
Hénon map [12].

As a first step in our analysis, we have carried out nu-
merical experiments using the previous model in order to
illustrate some pathological situations that can occur
when one tries to estimate the dynamic aperture in 4D.
Let us define the stability diagram as the set of the initial
conditions (x,0,y,0) that are bounded after N iterations:
this corresponds to make a scan over r and a, fixing the
phases ¢, and 4, to zero [see Eq. (13)]. In Fig. 3 we
show the stability diagram for the map given in Eq. (15),

1 kL )"-.‘.- PP N
OO 0.1 0.2 0.3 0.4 0.5 X
FIG. 3. Stability diagram of the map (15) with u=—0.2,

v, =0.25, and v, =0.618 03; initial conditions that are stable up
to 1000 iterations are plotted.
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(15), with u=-—0.2 and close to the resonance [4,0],
namely, v, =0.25 and v, =0.618 03; 1000 iterations were
considered. One can observe that the shaded area is very
irregular, with tiny holes well inside the stability domain:
the definition of dynamic aperture proposed in Sec. III C
leads to an underestimation of the actual dynamic aper-
ture. Indeed, if one examines the same stability domain
at a higher number of iterations (see Fig. 4, where 50 000
iterations are considered), it turns out that it is not obvi-
ous to define the dynamic aperture for this case. On the
other hand, when we are far from low-order resonances,
the situation seems to be, in general, more regular: in
Fig. 5 we plot the stability diagram of the map (15) with
u=1, v,=0.28, and v,=0.31. The stability domain is
full and its border is more regular.

We stress that in the rest of the computations, 1000
iterations were considered. We computed the dynamic
aperture over N =1000 turns for different values of the
parameter u, setting the tunes to the LHC values
v,=0.28 and v,=0.31. In Table II we give the
minimum and maximum distance to the origin of the sta-
bility border r_;, and r_, and the dynamic apertures
Ya,9,,9, Tad» aNd TgNF evaluated using the three

definitions given in Appendix B. Moreover, we also give
the position # of the last invariant curve along the direc-
tion a=m/4 (i.e., equal invariants) and 4, =,=0; this is
the indicator that is commonly used for fast dynamic
aperture estimates of complicated lattices [2,3]. In the
last row we quote the average relative errors with respect
to 74,9 ,9, computed with 20 steps for each variable: this

dynamic aperture estimate is affected by a relative error
of the order of 2%; also in this case, we verified the valid-
ity of the error bound by varying the number of integra-
tion steps and checking the stability of the computed dy-
namic aperture within the error. For the methods that

PSRN T SR S NS ST S St

0.3 0.4 0.5

X

FIG. 4. Stability diagram of the map (15) with u=—0.2,
v, =0.25, and v, =0.618 03; initial conditions that are stable up
to 50000 iterations are plotted.
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FIG. 5. Stability diagram of the map (15) with u=1,
v, =0.28, and v, =0.31; initial conditions that are stable up to
1000 iterations are plotted.

avoid the integration over the phases, the number of steps
in a and in r is 20; r, ; is computed over 1000 iterates.
The normal form truncation is carried with the same cri-
teria used for the 2D case.

Both the normal form and the average over the dynam-
ics give very good estimates. Although the evaluation of
the dynamic aperture along the bisetrix 7, is more precise
than in the 2D case, it is affected by an average error of
6%.

E. Numerical results: LHC cell lattice with random errors

We consider a lattice made up of eight LHC-like cells
[4] plus a phase shifter to set the linear tunes to the
values v, =0.28 and v, =0.31. Two different sets of non-
linearities have been considered: (i) a lattice with only
random sextupolar components in the dipoles and (ii) a
lattice with random sextupolar, octupolar, and decapolar
components in the dipoles.

The multipolar gradients have been set to the estimat-
ed values of the LHC dipole errors. For each case we an-
alyzed ten different seeds. In Table III we report the rela-
tive errors between methods 2 and 3 and method 1. The
same values of the number of steps as in the previous 4D
model have been used. The results confirm the trend of
the data shown in Table II: both r, ; and r, yr provide

TABLE II. Dynamic aperture estimates for the 4D model.

122 ¥ min ¥ max ro ra,ﬂl,ﬂz ra,d ra,NF

—1 0.24 0.53 0.392 0.356 0.375 0.371

0 0.29 0.77 0.371 0.380  0.392 0.378

1 0.30 0.66 0.405 0430 0.432 0430

10 0.12 0.25 0.177 0.166 0.161 0.169
average relative error 6% 3% 2%
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TABLE III. Dynamic aperture estimates for the LHC and SPS lattices.

Average relative error with respect to ra,6,,0, (%)

Model ro Yo,d ¥ a,NF
LHC, sextupoles only 16 2 3
LHC, all multipoles 9 1.5 2
SPS-WP1 13 9 8
SPS-WP2 37 5 6

an estimate of the dynamic aperture that is in agreement
with the direct integration of the stability domain,
without making the scan over two angles ¢, and ¢,. The
fast dynamic aperture estimate r, (carried along one
direction in phase space) neglects both the distortion of
the orbit and the contributions coming from particles
with different emittances: these phenomena are relevant
and thus make this estimate rather imprecise.

F. Numerical results: SPS

Finally, we consider the SPS lattice corresponding to
the setup used for nonlinear dynamics experiments [14].
The nonlinear part of the lattice is made up of eight
strong extraction sextupoles and 108 chromatic sextu-
poles. Two working points have been considered: the
first one (WP1) at v, =26.637 and v, =26.533, which is
close to resonances of order 7 and 8, the second one
(WP2) at v, =26.605 and v, =26.538, which is close to
resonances of order 5. Both working points correspond
to very perturbed situations where the nonlinear reso-
nances are excited and the phase space is strongly de-
formed. In Fig. 6 we plot the stability diagrams of WP1
and WP2, respectively, previously defined in Sec. III D.
The dependence of the stability domain on the ratio of
the invariants is extremely irregular. In Table III the
different estimates of the dynamic aperture rg, r, 4, and
roNp are compared to the estimate ¥a,9,,9, computed

with 20 steps in each variable. The results show that, due
to the high distortion in phase space, the estimate r,, ob-
tained on the line x /y =1, is really imprecise (15-40 %).
On the other hand, methods 2 and 3 provide a better esti-
mate, even if the error (5-9 %) is considerably higher
than in the other cases; this is probably due to the strong
nonlinearities of these models, which make the constants
that were neglected in the error estimates considerably
greater than one.

IV. CPU TIME AND DYNAMIC APERTURE ESTIMATE

Up to now we focused our analysis on the accuracy of
the methods proposed to estimate the dynamic aperture.
From the discussion of the different methods, it should be
clear, however, that they differ not only for the accuracy,
but also for the CPU time. In Table IV we present a
summary of the computation time needed for the analysis
of the LHC cell lattice and the SPS lattice. The simula-
tions have been carried out on the CERN PARC system,
which is a cluster of IBM RISC computer stations [17].

From Table IV it is apparent the enormous gain ob-
tained by evaluating the dynamic aperture along a line
x /y =1 with respect to the direct integration (by a factor
~10* with 20 integration steps in each variable). On the
other hand, from the previous discussion, we know that
this method can be rather imprecise. Methods 2 and 3
are almost equivalent as far as the CPU time requirement
is concerned: they are slower than r, (by a factor ~20),
but their precision is considerably higher; moreover, they
still provide a very large gain (~400) with respect to
direct integration. These CPU times are in very good
agreement with the analytical estimates.

V. CONCLUDING REMARKS

In this paper we have discussed a definition of dynamic
aperture of 2D and 4D betatronic motion when the effect
of phase space distortions is not negligible. The basic
reasons that do not allow a rigorous definition of this
quantity as in the 2D case have been briefly reviewed.
Three methods to compute the dynamic aperture and to
estimate the associated errors have been presented. The
optimization of the integration steps have been discussed
as well. The straightforward implementation of the dy-
namic aperture (method 1) is very CPU time consuming:
for this reason we have defined two alternative strategies
(methods 2 and 3) that allow one to avoid scanning over

FIG. 6. Stability diagram of the SPS with
working point 1 (left) and working point 2
(right); initial conditions that are stable up to
1000 iterations are plotted.
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TABLE 1V. CPU time for dynamic aperture estimates for
the LHC and SPS lattices.

Average CPU time (s)

Model ra,9],82 ¥o Ya,d ¥ a,NF
LHC, sextupoles only 13567 1 23 26
LHC, all multipoles 13710 2 30 59
SPS-WP1 92280 14 271 263
SPS-WP2 101512 9 278 280

the angles in the phase planes. Both methods have given
good results. Simulations carried out on simplified and
more realistic models have shown that the dependence
both on the phases and on the ratio of emittances can be
crucial for obtaining a precise estimate. Since these nu-
merical results are strongly model dependent, we believe
that for each model one should carefully test the
relevance of these effects. In this way one can choose the
most favorable combination of methods and therefore
achieve the best compromise between accuracy and CPU
time needed for the computations.
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APPENDIX A: METHODS TO COMPUTE
THE DYNAMIC APERTURE (2D CASE)

1. Method 1: Direct integration

To compute the dynamic aperture by performing the
direct integration it is necessary to evaluate Eq. (4). This
requires the discretization of the angular and radial vari-
ables. When this formula is implemented on a computer
code, one performs a scan over L angles ¢, =27/ /L with
I=1,...,L, and J radii r;=jR/J, with j=1,...,J
[where R is the maximum of 7 (;) over /]; hence the area
of the stability domain A4 4 and the related dynamic aper-
ture r4 read

172
L 172

S [r(9)P

Ay 1
L 1=1

T

rg= =

where r(01)—1‘£~EN . (A1

The somewhat strange condition r(&;)J/R €N means
that the radial variable is discretized and is a multiple of
the step R.
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(a) Error sources

The discretization both in the angular and in the radial
variables leads to an integration error, which can be es-
timated using the standard tools of numerical analysis.

The discretization in the angle ¢ correspond to a tra-
pezoidal rule of integration: depending on the regularity
of the curve r(4), one can have different estimates [18].
If the derivative of r () is bounded, then the relative er-
ror on the area A, is proportional to the inverse of the
number of steps L ~!; in the case where the derivative is
more regular, the estimate L ~2 holds. Since we are at
the edge of the stability domain, the curve r =r () can
be rather irregular. Therefore, in the following we will
always assume that the more pessimistic estimate L ~!
holds. The discretization in the radius r gives a relative
error proportional to the inverse of the number of steps
in the amplitude J 1.

(b) Step optimization

One should choose integration steps that produce com-
parable errors, i.e., J=<L. In this way, neglecting the
constants that are in front of the error estimates, one can
obtain a relative error in r4 of 1/2J by evaluating J? or-
bits, i.e., J2N iterates. [The factor 2 in the error estimate
of rs is due to the square root in Eq. (A1), i.e., to the
phase space dimension.]

2. Method 2: Integration over the dynamics

As already mentioned, the distribution of the phases is
usually highly nonuniform. For this reason a space aver-
age cannot be simply replaced by a time average [see Eq.
(5)]. In order to cure this effect one can use the following
approach: we fix & and find r (J) as in method 1, comput-
ing the N iterates of the orbit; we divide [0,27] in M
equal intervals (with M < N), such that each interval con-
tains at least the phase of one iterate of the orbit; for each
interval m =1, ..., M we compute r,,, which is the aver-
age distance of the iterates whose phase falls in that inter-
val; and finally, the dynamic aperture is computed as

| M 172
—- ro 12
M m2=1 [ " ]

ry= (A2)

We denote this definition by the label d. (Actually, one
can define more refined methods to estimate the invariant
when the motion is weakly perturbed [19] and obtain
better estimates of the accuracy. Since we are at the edge
of the stability domain, we believe that these methods do
not provide a significant gain with respect to the outlined
procedure.) The number of intervals M should be as high
as possible (having fixed the number of iterates N) in or-
der to minimize the integration error.

(a) Error sources

The error is given by the following contributions: the
discretization in the angle ¥, where the relative error is
proportional to M !, and the discretization in the radius
r, where the relative error is proportional to the inverse
of the number of steps J ~ 1.
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(b) Step optimization

Also in this case one should choose integration steps
that produce comparable errors, i.e., J <M. In this way,
if the constants in front of the error estimates are neglect-
ed, one obtains a relative error in 7; of 1/2J by evaluat-
ing J orbits, i.e., JN iterates. Therefore one obtains the
same relative error as with method 1, but with JN itera-
tions instead of J2N.

3. Method 3: Normal forms

The dynamic aperture can also be estimated by using
normal forms, since they allow one to quantify the non-
linear invariant (i.e., the area of the last stable curve).
We summarize the method in the following steps: we fix
& and compute 7 (3); we compute the value of the invari-
ant through the truncated inverse conjugating function ¥

p(3)=|¥(r(F)cosd, r(F)sind)|? , (A3)

whose value is independent of & up to a given precision,
which is the approximation provided by the normal form
to the dynamics of the map F; and the area of the stable
domain Ayp and the related dynamic aperture ryg is
given by

172

A N

N =V .
T

NF (A4)

Error sources

The error is given by the following contributions: the
discretization in the radius r (J steps), which leads to a
relative error in the dynamic aperture estimate propor-
tional to J !, and the normal form error. The applica-
tion of normal forms close to the dynamic aperture can
give inaccurate results [12,20]. The normal form error is
due to the divergence of the perturbative series and to the
truncation of the series, which, in turns, leads to the
neglect of higher-orders contributions. If the linear fre-
quencies are close to low resonances, the divergence ap-
pears at low truncation orders and therefore one is forced
to compute the perturbative series at low orders, neglect-
ing higher-order contributions, which can be relevant. In
the numerical examples analyzed in this paper, the linear
frequencies are far from low-order resonances, such as in
real accelerators, and therefore the normal forms turn
out to be very accurate.

APPENDIX B: METHODS TO COMPUTE
THE DYNAMIC APERTURE (4D CASE)

1. Method 1: Direct integration

When Eq. (12) is implemented on a computer code, one
considers K steps in the angle a and L steps in the angles
#,%,: the dynamic aperture reads
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K L L

T 2 [r(ak,’l?lll,’ﬁzlz)]4

Pa9,9,~ | 5077 2 2
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Xsin(2ay ) (B1)

and the discretization condition over the radius r reads

r(ak,'a”l,'&z]z)%eN . (B2)

(a) Error sources

The error is given by the following contributions: the
discretization in the angles ¢, and 1, gives a relative er-
ror proportional to L ~! (see the analysis of the 2D case),
the discretization in the angle a gives a relative error pro-
portional to K !, and the discretization in the radius r
gives a relative error proportional to J ~ 1.

(b) Step optimization

One should choose integration steps that produce com-
parable errors, i.e., J <K < L. In this way, neglecting the
constants that are in front of the error estimates, one can
obtain a relative error of 1/4J by evaluating J 4 orbits,
i.e., NJ* iterates. (Also in this case, the factor 4 in the er-
ror estimate is due to the dimensionality of the phase
space.) The fourth power in the number of orbits comes
from the dimensionality of phase space and makes a pre-
cise estimate of the dynamic aperture very CPU time
consuming: for instance, a 2.5% precision is obtained
with J =10, which implies the evaluation of 10000 or-
bits. Nevertheless, also in this case one can develop some
methods to avoid the integration over 4, and ¢,.

2. Method 2: Integration over the dynamics

The generalization of method 2 to the 4D case is
straightforward: we fix &, and &,, scan over «, and find
the radius 7 (a,d,,9,), computing the N iterates of the or-
bit; we divide [0,27[ X[0,27[ in M? equal squares (with
M?<N), such that each square contains at least the
phase of one iterate of the last stable curve; for each
square (my,m,), where m;=1,...,M  and
m,=1,...,M, we compute r, , (a,3,3,), which is
the average distance to the origin of the iterates that fall
in that angular square; and finally, the dynamic aperture
is computed as

T M K = 5 .1
Ta,d 2 2 [rml,mz(ak’al’OZ)]

= 2
2KM? , w12
1/4

Xsin(2ay ) (B3)

(a) Error sources

The error is given by the following contributions: the
discretization in the angles ¢,,7, (which is given by the
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M? squares over which the integration is carried out),
where the relative error in the dynamic aperture is pro-
portional to M ~! e« N~/ the discretization in the angle
a, where the relative error is proportional to K ~!; and
the discretization in the radius », where the relative error
is proportional to J ~ 1.

(b) Step optimization

One should choose J < K « V"M . Neglecting the mul-
tiplicative constants in the estimates, one can obtain a
relative error of 1/4J evaluating J 2 orbits, i.e.,

|
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J*M? < J2N iterates: one saves a factor J? with respect to
direct integration.

3. Method 3: Normal forms

The dynamic aperture estimate based on normal forms
tools is computed in the following way: we fix , and 9,,
scan over a, and find the radius r(a,51,1—92) as in method
2; we apply the inverse conjugating functions to the ini-
tial condition of the last stable curves to compute the
nonlinear invariants

pila,3,,3,)=|¥,(r cosa cosd,,r cosa sind,, 7 sina cosd,, 7 sina sind,)|? ,

(B4)

pala,&,3,)=|¥,(r cosa cosd,,r cosa sind, 7 sina cosd,, 7 sina sind,)|? ;

then the first-order result for dynamic aperture reads
K

Fo,NF— % S {pilaw, 31,3, +palay,3,,3,)) sin(2ay, )

k=1

174
(B5)

The exact formula contains higher-order terms that have been neglected for the sake of simplicity. The numerical re-

sults are not significantly affected by this approximation.

(a) Error sources

The error is given by the following contributions: the discretization in the angle a, where the relative error is propor-
tional to K ~!; the discretization in the radius », where the relative error is proportional to J ~!; and the normal form er-
ror, where the same observations made for the 2D case are valid for the 4D case.

(b) Step optimization

One should choose J < K. Neglecting the multiplicative constants in the estimate and assuming that the normal form
error is smaller than the integration error over r and a, one obtains a relative error of 1/4J by evaluating J2 orbits, i.e.,
J?N iterates: one saves a factor J? with respect to direct integration (without constraints over the number of iterates

such as in method 2).
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